

Russian Quantum Center Prof. Matti Krusius vuosipäivä

Espoo, Finland, 4-5 November 2022

Yu. M. Bunkov

Topological Q-bit based on magnon Bose-Einstein condensation.

Laboratory of Quantum Magnonics, Russian Quantum Center, Skolkovo, B. Bulvar 30, 121205, Russia

The spectra of magnons at different conditions have a fundamentally different form. They can be characterized by an attractive or repulsive interaction, positive, zero or negative mass.

1. Does our spatially homogeneous coherent state of magnons go beyond the Landau-Lifshitz approximation?

- 2. Can magnons with mass anisotropy be considered a Bose condensate?
- 3. The traveling spin waves with $k = 10^5$ 1/cm.

Can it be considered as Bose condensate or analogue of photon modes in a resonator?

Supported by Russian Science Foundation, grant 22-12-00322

Russian Quantum Center Prof. Matti Krusius vuosipäivä

Espoo, Finland, 4-5 November 2022

Yu. M. Bunkov

A few questions about magnon Bose condensation.

Laboratory of Quantum Magnonics, Russian Quantum Center, Skolkovo, B. Bulvar 30, 121205, Russia

The spectra of magnons at different conditions have a fundamentally different form. They can be characterized by an attractive or repulsive interaction, positive, zero or negative mass.

1. Does our spatially homogeneous coherent state of magnons go beyond the Landau-Lifshitz approximation?

- 2. Can magnons with mass anisotropy be considered a Bose condensate?
- 3. The traveling spin waves with $k = 10^5$ 1/cm.

Can it be considered as Bose condensate or analogue of photon modes in a resonator?

Supported by Russian Science Foundation, grant 22-12-00322

Prehistory 1977

I, rel. un.

₹

0,8

0,6

0.4

0.2

Soviet – Finland collaboration

P. Kapitza-W. Hovy

Magnon BEC and magnon superfluidity in antiferromagnetic ³He-B

Long-lived induction signal in superfluid ³He-B

A. S. Borovik-Romanov, Yu. M. Bun'kov, V. V. Dmitriev, and Yu. M. Mukharskii Institute of Physical Problems, Academy of Sciences of the USSR

(Submitted 16 August 1984) Pis'ma Zh. Eksp. Teor. Fiz. 40, No. 6, 256–259 (25 September 1984)

Critical current and Josephson effect

(Received 21 March 1988; revised manuscript received 16 November 1988)

Magnon BEC at room temperature

Atomic BEC

$$T_{BEC} \simeq 3.31 \, \frac{\hbar^2}{k_B m} \left(N_C \right)^{2/3},$$

Achieved by lowering the temperature below critical at a fixed particle density

Magnon Bose condensation

$$\hat{\mathcal{N}} = \hat{a}_{0}^{\dagger} \hat{a}_{0} = \frac{S - \hat{S}_{z}}{\hbar} \qquad \mathcal{E}_{k} = \mathcal{E}_{0} + \mathcal{E}_{ex}(ak)^{2}.$$

$$N_{C} \simeq \frac{k_{B}T_{m}}{4\pi a^{3}} \frac{\varepsilon_{0}^{1/2}}{\varepsilon_{ex}^{3/2}},$$

$$N_{c} \text{ corresponds to a 2.5^{o} magnetization}$$

$$deflection in YIG film$$
Yu. M. Bunkov, V. L. Safonov (JMMM) 452, 30 (2018)
$$\Psi = \sqrt{\frac{2S}{\hbar}} \sin \frac{\beta}{2} e^{i(\alpha + \omega t)}$$

YIG film, magnon excitation

Yu. M. Bunkov, V. L. Safonov (JMMM) 452, 30 (2018)

Anderson, P. W. & Suhl, H. Instability in the motion of ferromagnets at high microwave power levels. *Phys. Rev.* **100**, 1788 (1955).

scientific reports 11, 7673 (2021).

Check for updates

OPEN Quantum paradigm of the foldover magnetic resonance

Yu. M. Bunkov¹⁵³, A. N. Kuzmichev¹, T. R. Safin², P. M. Vetoshko¹, V. I. Belotelov^{1,3} & M. S. Tagirov²

H₀, Oe

Optical set up

The difference between the frequencies of RF and the laser modulation is 12 kHz.

Spin Wave modes, small excitation

BEC mode, high excitation

MBEC comparision

MBEC comparision

MBEC in Hillebrants group

Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping

S. O. Demokritov¹, V. E. Demidov¹, O. Dzyapko¹, G. A. Melkov², A. A. Serga³, B. Hillebrands³ & A. N. Slavin⁴

Nowik-Boltyk P, Dzyapko O, Demidov V E, Berloff N G and Demokritov S O 2012 *Sci. Rep.* **2** 482

Red circles in d indicate data obtained with a resolution of 50 MHz;

Hillebrants et all., Nature nanotechnology DOI:10.1038/s41565-020-0761-

Questions

1. The traveling spin waves with $k = 10^5$ 1/cm.

Can it be considered as Bose condensate or analogue of photon modes in a resonator?

2. Can magnons with mass anisotropy be considered a Bose condensate?

3. Does our spatially homogeneous coherent state of magnons go beyond the Landau-Lifshitz approximation?