Paljon Onnea Matti

one of my favorites

Phase-Diagram of the 1st-Order Vortex-Core Transition in Superfluid He-3-B Pekola, Simola, Hakonen, Krusius, Lounasmaa, Nummila, Mamniashvili, Packard, Volovik

50 Years of Superfluid ³He

Odd-Parity Symmetry in Topological Superconductors

Bill Halperin Northwestern University

National Science Foundation Directorate for Mathematical & Physical Sciences (MPS/DMR)

Topological Superconductors

³He

50 Years of Superfluid ³He

 UPt_3 Sr_2RuO_4 (?) URu_2Si_2 , UGe_2 , UCoGe $RbEuFe_4As_4$ UTe_2

Superfluid ³He

Osheroff Richardson Nobel prize 1996

Nobel prize

2003

Lee

Leggett

Basic properties of the superfluid

Basic Properties of the Superfluid

³He Susceptibility

Superfluid ³He-B order parameter

J = 2, bosonic Higgs collective modes

The highest symmetry odd parity state is the L = 1 isotropic state.

Balian/Werthamer, PRB **131** 1353 (1963) Vdovin, GOS ATOM ISDAT, p94 (1963)

тся, что спектр коллективных возбуждений в чинается не с нуля, а с некоторой граничной ч

$\omega_0^2 = \frac{8}{5} \Delta^2$

уравнение для разных *m*, получаем:

$$\omega^{2} = \omega^{2}_{0} + 0,44k^{2}v^{2}, \ m = 0;$$

$$\omega^{2} = \omega^{2}_{0} + 0,39k^{2}v^{2}, \ m = \pm 1;$$

$$\omega^{2} = \omega^{2}_{0} + 0,22k^{2}v^{2}, \ m = \pm 2.$$

г дисперсионное уравнение для возбуждедний, оп ункциями ψ_2^{2m} ;

$$\int \left[W_1 \operatorname{Sp} \left(B_{2m}^+ B_{2m} \right) - \frac{1}{2} W_5 |b_m|^2 \right] \frac{d \, \mathbf{n}}{4\pi} = 0.$$

ения следует, что эти возбуждения также имеют астоту ω_0' , равную соответственно

$$\omega_0'^2 = \frac{12}{5} \Delta^2$$

Longitudinal sound modes B-phase

B-phase order parameter collective modes

Transverse sound

normal fluid prediction: Landau, Sov. Phys. JETP **5**, 101 (1957) ... not yet observed threshold m*/m > 3

10

superfluid prediction: off resonant coupling to 12/5 collective mode Moores and Sauls JLTP **91** 13 (1993). Y. Lee *et al.* Nature **400** 431 (1999)

Transverse sound in superfluid ³He-B

Y. Lee *et al.* Nature **400** 431 (1999) J.P. Davis, *et al.* PRL **101**, 085301 (2008).

Transverse sound and Faraday rotation in Superfluid ³He-B

Y. Lee *et al*. Nature **400** 431 (1999) J.P. Davis, *et al*. PRL **101**, 085301 (2008) C. A. Collett *et al*. PRB **87**, 024502 (2013) normal fluid prediction: Landau, Sov. Phys. JETP **5**, 101 (1957) . . . not yet observed!

superfluid prediction: Moores and Sauls, JLTP **91** 13 (1993)

$$\boldsymbol{d}(\boldsymbol{k}) = \Delta(\mathrm{T}) \,\mathrm{e}^{\mathrm{i}\phi} \,\mathbf{R}(\hat{\boldsymbol{n}},\theta) \,\hat{\boldsymbol{k}}$$

Search for transverse sound in the normal fluid?

predicted by L. D. Landau, Sov. Phys. JETP 5, 101 (1957)

nanofabricated acoustic cavities Man Nguyen *et al.*

.... amplitude resolution improvement > 400

Surface states in ³He-B (Andreev and Majorana)

Background

Chung and Zhang, PRL **103**, 235301 (2009) Volovik, JETPL **90**, 398 (2009) Nagato, Higashitani, Nagai, JPSJ **78**, 123603 (2009) Murakawa *et al.* PRL **103**, 155301 (2009) Wu and Sauls, PRB **88**. 184506 (2013) Tsutsumi, PRL **118**, 145301 (2017) Ikegami and Kono, JLTP **195**, 343 (2019) Heikkinen *et al.* Nature Com.**12**, 1574 (2021)

Sauls arXiv:2203.16698 (2022)

Compare with confinement between silicon slabs Heikkinen *et al.* Nature Com.**12**, 1574 (2021) Ikegami and Kono, JLTP **195**, 343 (2019) negative ion mobility below the free surface of ³He-B

Surface states in ³He-B

Murakawa *et al.* PRL **103**, 155301 (2009) Okuda, Nomura, *J. Phys: Con. Mat.* **24** 343201 (2012)

Krusius.2022

"Proving the Majorana nature of surface Andreev bound states is an important next step. One potential way of achieving this is to detect the Ising-like behavior of the spin of surface Andreev bound states" Ikegami and Kono, JLTP **195**, 343 (2019)

Magnetic surface states in ³He-B

stretched silica aerogel, $\epsilon = 16\%$ strain, P = 26 bar ⁴He coverage completely removes the ³He surface solid

discovery: both ³He-A and ³He-B appear to be equal spin pairing states for H $\parallel\epsilon$

Ising surface states are a signature of Majoranas: Nagato *et al.* JPSJ **78**, 123603 (2009)

3

planar-like structure from simulation of anisotropic aerogel Nguyen *et al.* ArViv: (2022)

• future: measure $H \perp \epsilon$

Anisotropic aerogel: ⁴He preplated specular surface

P = 26.6 bar Strain 16% stretched

No susceptibility reduction in the B-phase; J. Scott, M.Nguyen, D. Park,WPH (2022)

Evidence for Andreev bound states with Majorana character. Nagato *et al.* JPSJ. 78, 123603 (2009).

Magnetic surface states in ³He-B preplated-stretched silica aerogel

Identification of the A and B-phases

Chiral order in ³He-A from confinement: anisotropic aerogel

Stretched Aerogel P-T Phase Diagram: 98% aerogel strain $\varepsilon = 14\%$

Pollanen et al., Nat. Phys. 8 317 (2012)

A and A_{flop} are axial A : $\ell \parallel strain$ A_{flop} : $\ell \perp strain$ "orbital flop"

Zimmerman *et al.* PRL **121** 255303 (2018): Li *et al.* JLTP **175**, 331 (2014) Scott, *et al.* LT29 poster: P22-SF1-12

Orbital-flop texture in ³He-A and ³He-B

Flop of the orbital axis in A and B

Topological Superconductors

 3 He UPt₃ Sr₂RuO₄ (?) URu₂Si₂, UGe₂, UCoGe RbEuFe₄As₄ UTe₂

UPt₃ ultra-high vacuum, e-beam, float-zone refining

high quality: $RRR_c = 1,460$ $\Delta T_c/T_c = 1.3 \text{ mK}$

Kycia thesis (97)

4 cm, 15 gm

UPt₃ A, B, C : a phase triplet

Stewart et al. PRL 52 679 (1984);

unconventional superconductor.

Sauls, E_{2u} symmetry Adv. in Phys. **43**, 11(1994)

symmetry breaking field

Nodal structure of UPt₃ A-phase

Strand, Van Harlingen *et al.* Science **328** 1368 (2010)

Directional tunneling experiment: A-phase

possible nodal directions for A-phase in the field of view of the crystal basal plane

consistency with E_{2u} symmetry single order parameter domain.

Superconductivity in the B-phase

Broken mirror and time reversal symmetries in the B-phase $E_{2u} f$ - wave state proposed by: Sauls, Adv. in Phys. **43**, 113 (1994)

 $\Delta(\hat{k}) = \Delta(T) \hat{k}_{z} (\hat{k}_{x} \pm i \hat{k}_{y})^{2}$

Polar Kerr effect onset in the B-phase

B-phase breaks time-reversal symmetry. The A-phase does not; consistent with E_{2u} symmetry as predicted by Sauls (1994).

Vortex phases of UPt₃

small angle neutron scattering (SANS) from vortices B-phase.

Gannon et al. NJP 17 023041 (2015) Avers et al. Nature Physics 16, 531(2020)

Mitrovic et al., Nature 413 501 (2001)

UPt₃ B-phase: broken time-reversal symmetry

Avers *et al.* Nature Physics **16**, 531(2020) Tokuyasu and Sauls, PRB **165**, 347 (1990)

Vortex phases of UPt₃ B-phase

evidence for broken mirror and time reversal symmetry

Similar to ³He-A Walmsey, Golov, PRL **109** 215301 (2012)

The symmetry breaking field in UPt₃

Krusius.2022

symmetry breaking field (?)

UPt₃ Transport (residual resistivity)

UPt₃: Specific heat

 $\begin{array}{l} \mbox{Correlation between ΔTA and T_c?} \\ \mbox{ΔT_A \propto Symmetry breaking field} \end{array}$

Mitchelitis, Pomaranski, Kycia, (Waterloo)

UPt₃ Specific heat

Krusius.2022

Prism-plane stacking faults

anisotropic elastic scattering, spin-orbit: Gannon et al. PRB 2017

TEM: Hong and Seidman

SANS: Avers, Eskildsen, WPH

Optical: Schemm, Kapitulnik

UPt₃: phase stability and the symmetry breaking field

Thuneberg *et al.* PRL (1998) for ³He aerogel: Anisotropic quasiparticle scattering favors anisotropic phases.

A-phase is more anisotropic than B. Anisotropic scattering favors A.

Likely the symmetry breaking field is anisotropic quasiparticle scattering

A-phase

B-phase

Krusius.2022

Thank You

