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classical physics, they depend on quantum physics
* Quantum fluids (such as two stable isotopes of liquid helium at very low temperature) display
superfluidity and two-fluid behaviour
» Quantum turbulence can be defined loosely as the most general way of motion of a quantum
fluid displaying superfluidity

T
Historically, QT in He Il was mentioned as a theoretical possibility by R. P. Feynman,

who recognized that QT ought to take the form of a random tangle of quantized vortices.
" Application of quantum mechanics to liquid helium?”,
Prog. in Low Temp. Phys., vol. 1, (1955)

Experiment - thermal counterflow in He |- aform of motion peculiar to two-fluid superfluid

. L. . . W.F. Vinen, Proc. Roy. Soc. A240 114, (1957)
hydrodynamlcs —was first |nvest|gated by W. F. VI nen W.F. Vinen, Proc. Roy. Soe. A240 128, (1957)

W.F. Vinen, Proc. Roy. Soe. A242 493, (1957)
(passed away onJune 8’ 2022) W.F. Vinen, Proc. Roy. Soe. A243 400, (1558)

The term Quantum Turbulence was introduced into the literature by C. F. Barenghi in




Quantum turbulence,
Cambridge University Press, in print)

A key point: for classical turbulence in the unbounded
case, there are only two length scales to consider: M and

n=(slV’)y™" Il

In superfluid turbulence, there is an additional important
scale, quantum length scale /4
: ’ lo=(el TR |

Even pure superfluid turbulence in the zero T limit,
therefore cannot be generally considered, in contrast to
statements in the literature, a simple “prototype” of
turbulence.
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Superfluid turbulence = turbulence in the superfluid component,

_ _ Involves quantized vortices
» Complicated process of vortex nucleation

» Quantized vortices appear spontaneously while
cooling helium through Tc (Kibble-Zurek mechanism)
» They decay and disappear at lower temperature.

* Rough walls of the vessel - pinning centres to anchor Image vortex
remnant vortices. D.D. Awschalom, KW. Schwarz, PRL. 52, 49 (1984). @ @ 1 Us " :
- potential barrier
Vortex nucleation SR

enough to make it unlikely INRC R
Nucleation of
guantized vortex

ring by a moving ion

UA vortex
Intrinsic % ™ Extrinsic (\‘oﬁgw.,’i‘h‘f'eéﬁo ’
0 ’ & Q He Il crit. velocity= 10 m/s, large  He Il crit. velocity= cm/s 6/ 0gs . ime

3He-B both intrinsic and extrinsic nucleation is possible

L 02 U =
Finne et al. B \ © . fl'<—newvortex
PRL 96; .085301_ R .vvn=-3-m'm/s 4 = ) 8y(mm

(2006) -~



* in experiments therefore: mostly flows due to oscillating objects
« finite T: complicated case due to two-fluid behavior, transition can occur in either component

Examples of oscillating objects used in experiments in He ll (and in 3He)

Discs and piles
of discs

Torsional
oscillators

Wires,
tuning forks

Spheres
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Vinen

Morishita, Kuroda, Sawada, Satoh,
JLTP 76, 387 (1989)

Lancaster, Osaka, Kosice, Moscow,
Helsinki, Grenoble, Prague......
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In He Il (at low enough T) drag coefficient displays three critical velocities

\&\S
S

=

For details, see: D. Schmoranzer, M.J. Jackson, V. Tsepelin, M. Poole, A.J. Woods, M.

ent

Drag coeff

~——— » First critical velocity —changes in frequency, little effect ondrag force

' 1 : 1 g; E » effective mass rises due to vortices pinned on the oscillator surface

> 505 K > need not lead to inc.reased drag (mostly potential flow)
38 K » Second critical velocity —non-linear dissipation setsin

» vortices spread into the bulk, carrying energy & momentum away
> if Cy << 1—the “wake” past the oscillator is not classical-like,
no large structures in the flow, building up the vortex tangle

Third critical velocity —large structures start to develop in the tangle

100 k- =S » drag rises towards classical value (full pressure drag, developed wake)
107 - . Vinen turbulence  Kolmogorov turbulence
. R featureless intense vortical region
10%F .
« 994 mK
ol L ol L LT Lo
10" 107 10” 10" 10°

Peak velocity (m 3'1)




Oscillatory flows of viscous fluids

as, e.g., 2
Stokes number St=—;
o

Reynolds number Re= by ”
)

Model system - oscillating plane: f

Stokes boundary layer thickness: 6 = i—'; \L




Introducing dimensionless quantities (velocity amplitude, characteristic length scales and
Independent timescale — angular frequency of oscillations):

u=Uu; L;V=V; wt=t"; p=p'pU? leading to the Navier-Stokes Equation of the form

ou’ U? U
(0 -VHu' +V'p'] = 4 A'n’"  Geometry and surface roughness matter:

U +
@ at’ Ll pLzz

2

Classical high Stokes number oscillatory flows St= 57 >>1
Body size D, dynamic viscosity n 4

Stokes boundary layer thickness (viscous penetration depth) L =L, =8 =1/27/(pw) << D

In this case, Navier-Stokes equation may be expressed using only one dimensionless parameter
Boundary-layer-based Reynolds number

Dn=Re, =dpU I'n




Isothermal flow at low velocities (with no quantized vortices present) - two independent velocity fields

Instability can occur either in normal fluid or in superfluid

Normal fluid

Superfluid

In analogy with classical high Stokes number oscillatory flows Instability occurs upon exceeding a critical velocity U =
 viscous penetration depth of the normal fluid

S :\/277/(,0“0)) << D

« Define Donnelly number Dn=06.p.U /7
R. J. Donnelly and A. C. Hollis-Hallett, Ann. Phys. 3, 320 (1958)

drag coefficient related to laminar flow

due to Donnelly-Glaberson instability

leading to the production of quantized vorticity

D.K. Cheng, M.W. Cromar, R.J. Donnelly, PRL 31, 433 (1973)
W. I. Glaberson et al., PRL 33, 1197 (1974), R.M. Ostermeier, and W.I.
Glaberson, 21, 191 (1975)

Which instability occurs first?




ANNALS OF rHysica: 3, 320-345 (19558

. . - . . . a #
Periodic Boundary Layer Experiments in Liquid Helium Defined originally for a smooth torsionally

R. J. DoNNELLY oscillating sphere with periods of 6.5s<T<25.05,

but failed to describe the onset of nonlinear

Institute _fﬂf' the E-fﬂ'dﬂ ﬂ'_r Metals and Dcpur!mcnf ﬂf Phyaits, Urﬂl-ﬂl'-l'ﬂf!y -E'I {?ﬁil'ﬂgﬂ', dISSIpation and hence was abandoned
Chicago, Hiineis '

AND . . .
It is, however, valid for laminar drag force
A. C. Houuig Harverr scaling and even the instabilities in the case
of hydrodynamically rough objects.

Department of Physics, University of Toronto, Toronto, Ontario

which 1t has in the whaole region A, Since there 12 no indieation of any discontinu-
ous change in either decrement or period of oscillation at ¢, , then, at ¢, , the

penetration depth must be equal to A, . Similarly the kinematie viseosity should
be v (= 5./p,). Thus we should form a Reynolds number defined as

He = {W-H‘ﬁ']*:\m“"rr . {2-1:}

1-{ S Eﬂﬂfﬂuﬂ‘_]




Peak Velocity [m/s] Donnelly Number, Dn
10 10" 10° 10 107 10" 10° 10' 10’
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Classical-like
instability at high T

- Crossover around 1.8 K
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instability at low T
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- Donnelly-Glaberson instability
at all temperatures

Dimensionless Velocity = U/ /kw
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T. V. Chagovets, Physica B 488, 62 (2016)
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Experimental setup

e Brass channel blocked at both ends (L=32mm, D=10mm) * Longitudinalsecond sound modes
. Resistive heater and thermometer at ends sl e il by leelien G oy
_ _ »  Detection: miniature Ge/GaAs thermometer
> Nuclepore membrane second sound sensors in the middle . High amplitude -> turbulence generation

> First three harmonic modes observed

Brass holder
Thermometer "
Itharm 2" harm 3 harm
............................................... Second sound

" Sensor |
Generator —L’? ﬂ € | | =
. | | V]
-l:@) lock-in : | . N 0000
100 V i \/ . | i
AC Heater lcm lcm
« Transversal second sound mode Y 2

-~ Two capacitive sensors in the center of channel
> Low amplitude used for turbulence detection

BN e i e o - Normal component interacts with quantized vortices
PRB 103, 134516 (2021). e Longitudinal second sound resonances . Attenuation in the presence of quantum turbulence

: : > Local determination of vortex line density
e Lowdrives: Lorentzian resonances




superfluid helium is universal, and can be derived from a
general argument based on the “superfluid Re”.

K s the circulation qguantum
S
U, = \/ 8wl 3 parameter of order unity

Slow increase with T, fair agreement with oscillating sphere,

but disagrees with ac counterflow below about 1.8 K
V. Kotsubo, G.W. Swift, PRL 62, 2604 (1989); JLTP 78, 351 (1990)

For ac counterflow, using U’ p, =U"p.

we calculated the critical Donnelly number

e Below 1.8 K the classical-like instability in
the normal fluid occurs first

 Above 1.8 K, the Donnelly-Glaberson

Critical Donnelly number
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S. Midlik, D. Schmoranzer, and LS: PRB 103, 134516 (2021).

Note: Inaccoflow s =U"




Summary — Transition to QT in oscillatory flows of He II

At low enough T, three critical velocities have been observed and phenomenologically understood

At T >1K, in the two-fluid region, situation is more complex, as two independent velocity
fields exist in isothermal flows at low velocities (with no quantized vortices)

We have shown that for high Stokes number oscillatory flows instability can occur
either in the normal fluid (upon reaching a critical Donnelly number)
or in the superfluid (upon reaching critical velocity for Donnelly-Glaberson instability)

Crossover between the two scenarios is observed
In flow due to an oscillating objects (DG instability at low temperature)
In second sound (DG instability at high temperature)




