


However, we should be
happy that Matti is indeed

with us.



(Ours and also Matti's desire is that this does
not turn into a memorial meeting).
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Today we are dealing with experiments the group has
been doing on the dynamics of the excitations which
live at the boundaries of superfluid 3He.

We are able to do these experiments in Lancaster
because we can reach temperatures where there are
essentially no quasiparticle excitations in the bulk
superfluid and thus the surface excitations dominate
the thermal landscape.
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Bound states
thermally isolated
from
container by “infinite”
Kapitza resistance.

Bound states thermally isolated from the
bulk superfluid as essentially no excitations
in the bulk.

Thus these bound
excitations live in
a completely
isolated world of
their own.





Most of the previous work using mechanical devices in the
superfluid has been done with oscillating structures, of one sort
or another, which can yield misleading results.

In recent years we have taken to using “oscillators” which move
at a constant velocity with quite surprising results.

The first being that with steady, rather than oscillatory, motion
objects can be moved through the superfluid at above the
Landau critical velocity but with no added dissipation as the
magic velocity is exceeded.

We understand that now but it was a big surprise at the time.



So we begin by using
“vibrating wires” where we
can set up a long
trajectory of steady
motion.

Such as the “goal-post”
oscillator shown here.
With these devices we can
construct a “race track”
several mms long.



With such a device we need to contrive a carefully profiled drive
current to ensure that the motion is accurately linear.

As can be seen we can
sustain linear motion
over a span of several
mms.
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This motion forms the basis of the experiment, as it sets up a
superflow around the periphery of the moving wire which allows
us to manipulate the distribution of excitations in the potential
well.

In the following we shall be looking at things from the viewpoint
of the rest frame of the wire, so we just need to take on board
the pure-potential flow pattern around a moving cylinder.
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Pure potential flow around a moving cylinder,
in the cylinder rest frame.

Velocity in the bulk: v

The wire sees the bulk liquid
approaching at velocity v,

Velocity at wire
surface: 2v

but at the wire surface, the
pure potential flow profile
gives the liquid a velocity of
2v along the “polar” lines.

This is where the action
takes place.



Toy model for the excitation dispersion curves

To keep the arguments straightforward we assume that the
excitations in the  surface potential well simply follow a gapless
fermionic form in the two dimensions parallel to the surface.



Toy model for the excitation dispersion curves

In the potential well In the bulk liquid

The bulk
energy gap, 



OK, let us start the wire moving.

What happens?   Well,  all excitations with momenta approaching
the wire               will appear to have higher energies in the wire
frame of reference,   and those with momenta retreating from the
wire               will appear to have lower energies.   Thus our
dispersion curves will start to shear as the wire accelerates.



This gives rearrangement of the excitations among the curves in
the well but no change in the local excitation density.



BUT,  as soon as the minimum of the dispersion curve in the bulk
falls below the “Fermi level” of the surface excitations,

then suddenly excitations in the well have a path to escape into
the bulk.



So, now excitations can escape to the bulk, with
haemorrhaging of excitations from the quantum well.



As long as the bands keep shearing, i.e. as long as the wire keeps
accelerating, then more and more “bound” excitations will
escape into the bulk.

This reduces the absolute number of excitations in the well as
there is no other repository of excitations to replenish them.

(Not quite true but be patient.)



HOWEVER,

Once the acceleration of the wire ceases, i.e. the wire velocity
reaches a stable value,   then the distribution comes to
equilibrium in the wire rest frame,

and no further excitations are lost to the bulk.

(And that is why steady velocities above the Landau velocity
create no dissipation.)



With the equilibrium distribution looking like this but with
a large local deficit of excitations.

Excitation deficit



From this stable situation, if we now decelerate the wire back to
zero velocity, the deficit remains as there is no rapid way that the
excitations can be replenished.



Excitation deficit

We have inter-curve scattering but this
does not change the densities.



So,   by accelerating the wire up above the local Landau Velocity we
can clear out a large fraction of the local bound excitations in the
region of the wire cross-section extrema.

Excitations
cleaned out!



Also, what is amazing about this is that because we are at such low
temperatures, just throwing these very few excitations off a very
small area of the wire, increases the temperature of the whole 3He
liquid volume by a very measurable amount.





So, just emitting these very few excitations off a very small area
of the wire increases the temperature of the whole 3He liquid
volume by ~1.5 K.













Thus, the mobility of
the bound excitations
fills up the deficit region
exponentially with a
time constant of
roughly 8 ms.

The thermal effect is
higher at higher
temperatures as there
is a higher density of
bound states in the well,
but mobility is similar.



We are now having a debate about what all these time constants
mean.  There have been several statements in the past that the
velocity of the bound states should the Landau critical velocity.
But that seems unlikely, just from logic.

These excitations are deep down in the potential well.  They don’t
know anything about the gap.  So we are still thinking about this
aspect.   But at least we can measure something of what is going on.



Where next??





But this meeting is about topological
systems.  Thus, I thought for Volodya’s

sake that there ought to be a topological
conclusion.










