troduction	Geometric Phase 00000	Geometric Phase Gate	Off-Resonance Error	Conclusion O

Aharanov-Anandan geometric phase based precise quantum control and related topics

Yasushi Kondo

in TQM symposium at Aalto Univ. (4 and 5 Nov. 2022)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 00	Geometric Phase 00000	Geometric Phase Gate	Off-Resonance Error	Conclusion 0
Agenda				
 Intr V Gec F Q A 	oduction Vho am I ? ometric Phase Parallel Transpor Geometric Phase A phase in NM	t s R		
3 Geo • (• C • E • E	ometric Phase G Composite One-C Cyclic States and Fror of Composi Dynamic Phase a	ate Qubit Gate One-Qubit Gates te Quantum Gate Ind Robustness		
 ④ Off- ● C ● C ● C 	Resonance Erro Off-Resonance En Geometric Prope CORP ² SE	r rror rty of ORE robust C	omposite QG	

Conclusion

Introduction ●0	Geometric Phase	Geometric Phase Gate	Off-Resonance Error	Conclusion O
Who am I	?			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- \bullet Graduated from Kyoto Univ. at 1989/05
- ROTA 1: 1988/11 ~ 1991/8
- $\bullet\,$ EP V, Uni. Bayreuth : $1991/9\sim1995/10$
- ROTA 1: 1995/11 ~ 1997/3
- JRCAT: 1997/4 \sim 2000/3
- Kindai Univ. : 2000/4 \sim
 - Quantum Computer related works
 - CREST (2017/10 \sim 2023/3)

- Why are they robust against errors ?
- Are there any common properties ?

Geometric Phase Geometric Phase Gate Off-Resonance Error

The conditions of the parallel transport of \vec{e} along a circuit C is

$$\vec{e}\cdot\vec{r}=0$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 φ is equal to the solid angle enclosed by C.

The parallel transport law in Quantum Mechanics is

$$\Im(\langle \psi | d\psi \rangle) = 0$$
, or $\Im(\langle \psi | \frac{d}{dt} | \psi \rangle) = 0$.

Suppose $\Im(\langle \psi | d\psi \rangle) = 0$ is always satisfied and X (parameter of Hamiltonian) is taken round a circuit C. Then,

$$|\psi_{\text{final}}\rangle = \exp(i\gamma(\mathcal{C})) |\psi_{\text{initial}}\rangle,$$

where $\gamma(C)$ is called as the quantum geometric phase since

$$\gamma(C) = \oint d\gamma = -\Im \oint_C \langle n | dn \rangle = -\Im \iint_{\partial S = C} \langle dn | \wedge | dn \rangle,$$

where $|\psi\rangle = |n(X)\rangle \exp(i\gamma)$.

Introduction 00	Geometric Phase ○○●○○	Geometric Phase Gate	Off-Resonance Error	Conclusion O
Rerry Pha	20			

Schrödinger eq. $i\hbar \frac{d}{dt} |\Psi\rangle = H(X) |\Psi\rangle$ governs the dynamics of $|\Psi\rangle$. When X changes adiabatically, then

$$|\Psi\rangle \approx |\psi\rangle \exp\{-\frac{i}{\hbar}\int_0^t E_n(X(t'))dt'\}.$$

The adiabaticity leads $\Im(\langle \psi | \frac{d}{dt} | \psi \rangle) = 0$, and thus

$$\langle \psi_{\text{initial}} | \psi_{\text{final}} \rangle = \exp(i\gamma(C)).$$

Finally, including the dynamic phase $\gamma_{\rm d}$,

$$\langle \Psi_{\text{initial}} | \Psi_{\text{final}} \rangle = \exp(i(\gamma_{\text{d}} + \gamma(C))),$$

where $\gamma_{\rm d} = \exp\{-\frac{1}{\hbar}\int_0^T E_n(X(t'))dt'\}$ and T is a time for rounding the circuit C.

Introduction Geometric Phase Geometric Phase Gate Off-Resonance Error Conclusion of the context of the context

Aharonov-Anandan phase

We consider a cyclic motion in the projected Hilbert space that includes all quantum states but the phases are ignored, or

 $|\Psi(T)
angle=e^{i\gamma}\left|\Psi(0)
ight
angle.$

A dynamic phase γ_d and geometric phase γ_g are given as

$$\gamma_{\mathrm{d}} = -\int_{0}^{T} \langle \Psi | H | \Psi \rangle \, dt, \ \ \gamma_{\mathrm{g}} = i \int_{0}^{T} \langle \Psi | \, rac{d}{dt} \, | \Psi
angle \, dt = \gamma - \gamma_{\mathrm{d}}.$$

The projected Hilbert space for a one-qubit can be mapped on to the Bloch sphere. When $H(\boldsymbol{m}, \theta) = \theta \frac{\boldsymbol{m} \cdot \boldsymbol{\sigma}}{2} \frac{1}{T}$ and $|\Psi\rangle = |\boldsymbol{n}\rangle$,

$$\gamma_{\mathrm{d}} = -\int_{0}^{T} \langle \boldsymbol{n} | \mathcal{H}(\boldsymbol{m}, heta) | \boldsymbol{n}
angle dt = -rac{ heta}{2} \boldsymbol{m} \cdot \boldsymbol{n}.$$

D. Suter, etal, Phys. Rev. Lett. 60, 1218 (1988).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

We consider an elementary gate $R(\boldsymbol{m}, \theta) = \exp\left(-i\theta \frac{\boldsymbol{m} \cdot \boldsymbol{\sigma}}{2}\right)$. A real one qubit operation has an error $\boldsymbol{\varepsilon}$, thus

$$ilde{R}(oldsymbol{m}, heta) \;\; = \;\; R(oldsymbol{m}, heta(1+arepsilon)) = R(oldsymbol{m}, heta) + oldsymbol{O}(arepsilon).$$

We can construct a more reliable composite quantum gate,

$$\prod_{j=1}^{N} \tilde{R}(\boldsymbol{m}_{j}, \theta_{j}) = \prod_{j=1}^{N} \tilde{R}_{j} = R(\boldsymbol{n}_{0}, \theta) + \boldsymbol{O}(\varepsilon^{2}).$$

We call this as a robust composite quantum gate against the ε .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Introduction
 Geometric Phase
 Geometric Phase Gate
 Off-Resonance Error
 Conclusion

 Cyclic States and One-Qubit Gates

Any one-qubit gate U is given as

$$U=e^{i\gamma_{+}}\left| oldsymbol{n}_{+}
ight
angle \left\langle oldsymbol{n}_{+}
ight| +e^{i\gamma_{-}}\left| oldsymbol{n}_{-}
ight
angle \left\langle oldsymbol{n}_{-}
ight| ,$$

where $|\pmb{n}_{\pm}
angle$ satisfies

$$\exists \left| \boldsymbol{n}_{\pm} \right\rangle \quad \text{s.t.} \quad U \left| \boldsymbol{n}_{\pm} \right\rangle = e^{i \gamma_{\pm}} \left| \boldsymbol{n}_{\pm} \right\rangle \quad \text{and} \quad \left\langle \boldsymbol{n}_{+} \left| \boldsymbol{n}_{-} \right\rangle = \boldsymbol{0},$$

and is called cyclic states. When γ_{\pm} contains no dynamic phase, we call U as a geometric phase gate. An elementary gate $R(\boldsymbol{m}, \theta) = \exp\left(-i\theta \frac{\boldsymbol{m} \cdot \boldsymbol{\sigma}}{2}\right)$ is also given as

$$R(\boldsymbol{m}, heta) = e^{-i heta/2} \ket{\boldsymbol{m}} ra{\boldsymbol{m}} + e^{i heta/2} \ket{-\boldsymbol{m}} ra{-\boldsymbol{m}},$$

with cyclic states $|\pm \boldsymbol{m}\rangle$. But, it is a dynamic phase gate since $\gamma_{\rm d} = \mp \frac{\theta}{2}$ and $\gamma_{\rm g} = 0$.

Introduction Geometric Phase Geometric Phase Gate Off-Resonance Error Conclusion

$$\prod_{j=1}^{N} \tilde{R}(\boldsymbol{m}_{j}, \theta_{j}) = R(\boldsymbol{n}_{0}, \theta) + \sum_{j=1}^{N} R_{N} \dots R_{j} R(\boldsymbol{m}_{j}, \varepsilon \theta_{j}) \dots R_{1} + O(\varepsilon^{2})$$

$$= R(\boldsymbol{n}_{0}, \theta) + \sum_{j=1}^{N} R_{N} \dots R_{j} \left(-i\varepsilon \frac{\theta_{j}}{2} \boldsymbol{m}_{j} \cdot \boldsymbol{\sigma} \right) \dots R_{1} + O(\varepsilon^{2})$$

$$= R(\boldsymbol{n}_{0}, \theta) - i\varepsilon \sum_{j=1}^{N} R_{N} \dots R_{j} (H_{j} T_{j}) \dots R_{1} + O(\varepsilon^{2}),$$

remember that $H_j T_j = \theta_j \boldsymbol{m} \cdot \boldsymbol{\sigma}/2$. $\prod_{j=1}^N \tilde{R}(\boldsymbol{m}_j, \theta_j)$ becomes a robust composite quantum gate, if $\sum_{j=1}^N R_N \dots R_j(H_j T_j) \dots R_1 = 0.$

Dynamic Phase and Robustness

The sum of dynamic phases during $\prod_{j=1}^{N} R_j$ starting from $|\mathbf{n}_0\rangle$ is given as

$$\sum_{j=1}^{N} \gamma_{\mathrm{d},j} = -\sum_{j=1}^{N} \langle \mathbf{n}_{j-1} | H_j T_j | \mathbf{n}_{j-1} \rangle,$$

where $| {m n}_j
angle = \prod_{k=1}^j R_k \, | {m n}_0
angle$. On the other hand,

$$\langle \boldsymbol{n}_0 | \sum_{j=1}^N R_N \dots R_j H_j T_j \dots R_1 | \boldsymbol{n}_0 \rangle = e^{-i\theta/2} \sum_{j=1}^N \langle \boldsymbol{n}_{j-1} | H_j T_j | \boldsymbol{n}_{j-1} \rangle,$$

since $\langle \boldsymbol{n}_0 | R_N \dots R_j = e^{-i\theta/2} \langle \boldsymbol{n}_{j-1} |$.

A composite quantum gate is robust against a control field strength error. \downarrow It is geometric.

Two typical errors:

 Control field strength error → AA phase based CQGs (called as Pulse Length Error)

$$ilde{\mathsf{R}}({m{m}}, heta) = \mathsf{R}({m{m}}, heta(1+arepsilon)) = \mathsf{R}({m{m}}, heta) + {m{\mathcal{O}}}(arepsilon)$$

• Off-Resonance Error \longrightarrow Another type of CQGs

A CQG is ORE robust, iff its trajectory satisfies

$$ec{z}^t\cdot\int_0^Tec{p}(t)dt=0,$$

for any starting point $\vec{p}(0)$ on the Bloch sphere.

When the angular velocity is constant,

$$\vec{z}^t \cdot \vec{M}_{\vec{p}} = 0.$$

A CQG is ORE robust iff the mass center $\vec{M}_{\vec{p}}$ of the errorless trajectory exists on the *xy*-plane.

Introduction	Geometric Phase	Geometric Phase Gate	Off-Resonance Error	Conclusion
00	00000		○○●	0
CORP ² SE				

CORP²SE

Compensation for Off Resonance with a Perpendicularly combined Pulse SEquence as an ORE robust Composite Quantum Gate

 $R(\mathbf{m}(0),\pi)$ $= R(m(3\pi/4), 3\pi/2)R(m(\pi/4), \pi/2)R(m(3\pi/4), 3\pi/2)$

(ロ)、

Introduction 00	Geometric Phase	Geometric Phase Gate	Off-Resonance Error	Conclusion
Conclusior	ı			

- Geometric properties of composite quantum gates are discussed.
 - JPSJ 80 (2011) 054002, Phil. Trans. R. Soc. 370 2012, 4671.
 - Scientific Reports 12 (2022) 1.
- I have been working on composite quantum gates (11 papers) since 2009 with Bando, Ichikawa, Filgueiras, Goto, Güngördü, Kiya, Kukita, Nakahara, Nemoto, Ota, Shikano, and Suter.
- I will keep studying composite quantum gates. Application to
 - weakly anharmonic oscillators
 - quantum computer with globally manipulated qubits

Thank you for your attention.